If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+2n-364=0
a = 2; b = 2; c = -364;
Δ = b2-4ac
Δ = 22-4·2·(-364)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-54}{2*2}=\frac{-56}{4} =-14 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+54}{2*2}=\frac{52}{4} =13 $
| n-28=11 | | (6x+1)+(4x-11=180 | | (x+4)(x+3)=49 | | 1+6m=73 | | x2+13x+25=2x+1 | | -92=4-8n | | x2+19x+37=5x-3 | | 2(x+6)=3(x-4 | | 1x-9Y-27=0 | | -11+y/5=-7 | | (x-1)^2=-16 | | 1/5x+8=2/5+10 | | c/3+-24=-33 | | 5(2x+3)+3=(x-2) | | x÷7=3÷5 | | 5(x-1)=2+4(x-1) | | x2+6x-8=8 | | -10b+-20=-90 | | q-29/8=7 | | 90=12+-3f | | 3y=30-6y+24 | | x2+3x+9=7 | | 3(n+2)=2n+1 | | 3/4i+7=1/4i+3 | | 2(x+8)+4=(x+3) | | 7b+17=8b-8 | | -2(m-5)4m=15 | | 17=h/4+14 | | x+3x+2x=63 | | 3z+20=29 | | 21x+11=6x+41 | | 19x-5=13x+91 |